The Blair technique utilizes neurological tests, heat sensitive instrumentation and other means for detecting when the vertebral subluxation is present or absent. The adjustment is administered only when nerve pressure is present.

The Blair technique utilizes precise x-rays of the upper cervical area to determine which way the vertebrae has misaligned so that a precise and specific adjustment may be tailored and administered to that individual.


The Blair Technique has as its exclusive concern the analysis and correction of the subluxations of the cervical vertebrae, and as its only goal the consequent cervical spine. Subluxated articular misalignments are analyzed as they displace the nueral rings, thereby occluding the neural canal and compromising cord space. The clinical objective of the technique is therefore to restore maximum patency of the neural canal in the cervical region. Biochemical and orthopedic standards of alignment are not the objective of the technique because they are vulnerable to violations of symmetry and do not necessarily bear any relation to the relief of nerve interference in a given case.

Analytical Procedures

The presence of nerve interference in the cervical spine is determined by the observation of both a persistent differential parasipinal dermothermographic pattern in the cervical region and a functional leg length deficiency. A dual-probe instrument is used for detecting and recording continuous heat differentials in the cervical paraspinal area, with the instrument glide proceeding superiorly from about TI spinous process to about the superior nuchal line. At least two, and preferably three, consecutive readings, taken on separate days, a-re required to determine the patient’s individual, characteristic heat pattern indicative of nerve interference. The individual’s pattern is defined by those unilateral heat deflections (“breaks”) which are invariantly present on each of the pre-adjustive readings. Except in the case of a new injury changing the misalignment, the patient is not readjusted subsequent to the initial adjustment until the original dermothermographic pattern has returned, in the presence of a functional leg length deficiency. (Dr. Blair required these findings on two separate occasions not more than seven days apart before re-adjusting the patient, as do some contemporary practitioners.)

The functional leg length deficiency has traditionally been assessed in the prone position without further elaboration. However, many current practitioners add the Thompson-Derfeid procedures of modified Prill procedures, or both, and some practitioners use the supine spinal balance test, either instead of the prone testing or in conjunction with it. (See Appendix A for further discussion of the applications of dermothermographic and spinal balance testing.)

A concise summary of the Blair Cervical spinographic analysis has been published previously and is included as Appendix B, to which the reader is here referred.

Adjusting Procedures

The Blair Toggle-Torque adjustive thrust, developed from the adjustive methods of B.J. Palmer, is a distinctive toggle mechanism without recoil on the part of the adjuster and incorporating a 180 degree torque. It is applied with the patient placed in the side posture on an adjusting table with a drop headpiece. Crucial to proper application of the Blair Toggle-Torque is the mastery of the “pisiform lead,” in which the contacting surface of the adjuster’s pisiform remains in firm contact with the segmental contact point throughout the adjustive thrust, rather than describing a helical pathway as in some other upper cervical techniques.

One unique feature of Blair Technique is that, for any given articular misalignment to be adjusted, the clinician has a choice of adjustments permitting either an ipsilateral or a contralateral segmental contact. Superior or inferior torque is used, depending upon the misalignment and choice of contact. (In adjusting posterior-inferior atlas listings no torque is used, and the adjustor does recoil his hands from the thrust.)

Listings of any cervical vertebra may be adjusted using the Blair method, although Dr. Blair did not adjust below C4, and some current practitioners do not adjust below C2 or even Cl. Atlas is analyzed and listed as misaligning either obliquely anterior-superior or obliquely posterior-inferior along either or both of the long axes of the atlantooccipital articulations. Adjustments of atlas require the doctor to orient along up to three angular measurements of C I or the condyles from the spinographic series, depending upon the misalignment. Ipsilateral or contralateral condylar slope, atlas plane line in the lateral view, convergence of the ipsilateral or contralateral atlanto-occipital articulation, and posterior condylar convexity measurements may be incorporated in the adjustment, depending upon the listing and choice of segmental contact. Atlas contacts are made on transverse process or posterior arch.

Axis and subjacent cervical segments are analyzed and listed as misaligning either anterior-superior or posterior-inferior at one or both apophyseal articulations. The slope of the relevant articulation is used in the adjustment, and segmental contact points may include the ipsilateral or contralateral lamina or spinous process. In cases where two segments (usually C2 and C3) have misaligned together to the same extent in relation to the subjacent segment, both segments may be contacted simultaneously in the adjustment. Where tow adjacent segments have misaligned in opposite directions, opposing contacts (using both hands) may be made on the two segments simultaneously.